→ superposition α [00...0> t/Sli....)
in groundstate subspace is
destroyed
Altogether we see that ground state
is only protected if we prohibit
longitudinal fields (due to som sym)
→ " symmetry protected topological order"
Jordan - Wigner transformation:
define
a_{1i-1} =
$$\prod_{k=1}^{i-1} X_k Z_i$$
, $a_{2i} = \prod_{k=1}^{i-1} X_k Y_i$
→ $a_k = a_k^{\dagger}$ (hermitian),
 $\{a_k, a_k\} = 2 \delta_{k,k}$, E
"Majorana fermions"
→ Ising stabilizer Hamiltonian becomes:
 $H_{Ising} = -\int_{i=1}^{j} \sum_{i=1}^{j} (-i) a_{2i} a_{2i+1}$

Ø

$$\Rightarrow \log (\operatorname{cal} \operatorname{operators} \operatorname{acting} \operatorname{on} + \operatorname{the} \\ \operatorname{groundstates} \operatorname{are} \\ L_2 = \alpha_1 = \overline{2}, \quad , \quad L_X = \alpha_1 \alpha_{2n} = \gamma_1 \left(\prod_{k=2}^{n-1} \chi_k \right) \chi_k \\ \operatorname{degree} \quad \operatorname{of} \quad \operatorname{freedom} \quad \operatorname{in} \quad \operatorname{degenerate} \\ \operatorname{groundstate} \quad \operatorname{is} \quad \operatorname{unpaired} \quad \operatorname{Majorana} \\ \operatorname{fermion} : \\ 1|_L \rangle = \alpha_{2n} 10 \rangle + \alpha_{2n} \alpha_1 10 \rangle, \quad |\alpha_L \rangle = \alpha_1 0 \rangle + 10 \rangle \\ \Rightarrow \quad L_2 \quad |1_L \rangle = -\alpha_{2n} \alpha_1 10 \rangle - \alpha_{2n} 10 \rangle = -11L \rangle \\ \quad L_2 \quad |\alpha_L \rangle = -\alpha_{2n} \alpha_1 0 \rangle = 10L \rangle$$

2) Kitaeo's toric code:
Stabilizer Hamiltonian is given by
H_{Kitaeo} = - J
$$\sum_{n} A_{n} - J \sum_{n} B_{n}$$

-s ground state has 4-fold
degeneracy
Errors on code space correspond
to excitations
-s two types of excitations:
Z(C_1) and X(C_1)
-s excitations appear at boundaries
of error chains Def and DET
(as local energy changes
from - J to + J there)
Now consider the following process:
(*) Z(C_1^{(s)}) X(C_1^{(s)}) Z(C_1^{(n)}) X(Z_1^{(n)}) h) = -14)

Interpretation :

Cal (a) A pair of Z-type excitations is created moved around torus and annihilated (b) A pair of X-type excitations is created, moved around torus and anni hilated (c) process (a) is repeated (d) process (6) is repeated By combining the two red circles to one contractible loop and similarly the two blue circles, one gets.

More generally, using a finite group G,
we can define a quantume state
19> (g ∈ G) in a 1G1-dim. Hilbert space
-> define 4 types of operators for
each g ∈ G:
Lf =
$$\sum_{h \in G} 1g_h > \langle h|, L^3 = \sum_{h \in G} |hg^{-1} > \langle h|,$$

 $T_{+}^h = |h > \langle h|, T_{-}^h = |h^{-1} > \langle h^{-1}|$
Then define the "non-Abelian" toxic code:
 $H = -\frac{1}{7} \sum_{m} A(f_m) - \frac{1}{7} \sum_{m} B(2k)$
in terms of
 $A(f_m) = \sum_{g_1 > 2g_3 = 1}^{2g_1} (e_{e_1}^m) T_{-}^{2g_2} (e_{e_3}^m) T_{-}^{2g_3} (e_{e_3}^m)$
 $B(\nu_k) = \frac{1}{1G1} \sum_{g \in G} L_{+}^g (e_{e_1}^n) L_{+}^g (e_{e_3}^n) L_{-}^g (e_{e_3}^n) L_{-}^g (e_{e_3}^n)$
where the 4 edges $e_{e_{1,2,3,4}}^m \in Of_m$ and
 $\overline{e_{e_{1,2,3,4}}^n \in SV_k = Of_k$ are labeled clock wise
-> gives rise to non-Abelian braiding